blob: d59f04a83365097e751762e4632396aa8f74fe6e [file] [log] [blame]
/*
* Copyright 2009 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package com.google.gwt.dev.util.collect;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.AbstractCollection;
import java.util.AbstractSet;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
/**
* A memory-efficient hash map.
*
* @param <K> the key type
* @param <V> the value type
*/
public class HashMap<K, V> implements Map<K, V>, Serializable {
/**
* In the interest of memory-savings, we start with the smallest feasible
* power-of-two table size that can hold three items without rehashing. If we
* started with a size of 2, we'd have to expand as soon as the second item
* was added.
*/
private static final int INITIAL_TABLE_SIZE = 4;
private abstract class BaseIterator<E> implements Iterator<E> {
private Object[] coModCheckKeys = keys;
private int index = 0;
private int last = -1;
public boolean hasNext() {
if (coModCheckKeys != keys) {
throw new ConcurrentModificationException();
}
advanceToItem();
return index < keys.length;
}
public E next() {
if (!hasNext()) {
throw new NoSuchElementException();
}
last = index;
return iteratorItem(index++);
}
public void remove() {
if (last < 0) {
throw new IllegalStateException();
}
if (coModCheckKeys != keys) {
throw new ConcurrentModificationException();
}
internalRemove(last);
if (keys[last] != null) {
// Hole was plugged.
index = last;
}
last = -1;
}
protected abstract E iteratorItem(int index);
private void advanceToItem() {
for (; index < keys.length; ++index) {
if (keys[index] != null) {
return;
}
}
}
}
private class EntryIterator extends BaseIterator<Entry<K, V>> {
@Override
protected Entry<K, V> iteratorItem(int index) {
return new HashEntry(index);
}
}
private class EntrySet extends AbstractSet<Entry<K, V>> {
@Override
public boolean add(Entry<K, V> entry) {
boolean result = !HashMap.this.containsKey(entry.getKey());
HashMap.this.put(entry.getKey(), entry.getValue());
return result;
}
@Override
public boolean addAll(Collection<? extends Entry<K, V>> c) {
HashMap.this.resizeForJoin(c.size());
return super.addAll(c);
}
@Override
public void clear() {
HashMap.this.clear();
}
@Override
@SuppressWarnings("unchecked")
public boolean contains(Object o) {
if (!(o instanceof Entry)) {
return false;
}
Entry<K, V> entry = (Entry<K, V>) o;
V value = HashMap.this.get(entry.getKey());
return HashMap.this.valueEquals(value, entry.getValue());
}
@Override
public int hashCode() {
return HashMap.this.hashCode();
}
@Override
public Iterator<java.util.Map.Entry<K, V>> iterator() {
return new EntryIterator();
}
@Override
@SuppressWarnings("unchecked")
public boolean remove(Object o) {
if (!(o instanceof Entry)) {
return false;
}
Entry<K, V> entry = (Entry<K, V>) o;
int index = findKey(entry.getKey());
if (index >= 0 && valueEquals(values[index], entry.getValue())) {
internalRemove(index);
return true;
}
return false;
}
@Override
public boolean removeAll(Collection<?> c) {
boolean didRemove = false;
for (Object o : c) {
didRemove |= remove(o);
}
return didRemove;
}
@Override
public int size() {
return HashMap.this.size;
}
}
private class HashEntry implements Entry<K, V> {
private final int index;
public HashEntry(int index) {
this.index = index;
}
@Override
@SuppressWarnings("unchecked")
public boolean equals(Object o) {
if (!(o instanceof Entry)) {
return false;
}
Entry<K, V> entry = (Entry<K, V>) o;
return keyEquals(getKey(), entry.getKey())
&& valueEquals(getValue(), entry.getValue());
}
@SuppressWarnings("unchecked")
public K getKey() {
return (K) unmaskNullKey(keys[index]);
}
@SuppressWarnings("unchecked")
public V getValue() {
return (V) values[index];
}
@Override
public int hashCode() {
return keyHashCode(getKey()) ^ valueHashCode(getValue());
}
@SuppressWarnings("unchecked")
public V setValue(V value) {
V previous = (V) values[index];
values[index] = value;
return previous;
}
@Override
public String toString() {
return getKey() + "=" + getValue();
}
}
private class KeyIterator extends BaseIterator<K> {
@SuppressWarnings("unchecked")
@Override
protected K iteratorItem(int index) {
return (K) unmaskNullKey(keys[index]);
}
}
private class KeySet extends AbstractSet<K> {
@Override
public void clear() {
HashMap.this.clear();
}
@Override
public boolean contains(Object o) {
return HashMap.this.containsKey(o);
}
@Override
public int hashCode() {
int result = 0;
for (int i = 0; i < keys.length; ++i) {
Object key = keys[i];
if (key != null) {
result += keyHashCode(unmaskNullKey(key));
}
}
return result;
}
@Override
public Iterator<K> iterator() {
return new KeyIterator();
}
@Override
public boolean remove(Object o) {
int index = findKey(o);
if (index >= 0) {
internalRemove(index);
return true;
}
return false;
}
@Override
public boolean removeAll(Collection<?> c) {
boolean didRemove = false;
for (Object o : c) {
didRemove |= remove(o);
}
return didRemove;
}
@Override
public int size() {
return HashMap.this.size;
}
}
private class ValueIterator extends BaseIterator<V> {
@SuppressWarnings("unchecked")
@Override
protected V iteratorItem(int index) {
return (V) values[index];
}
}
private class Values extends AbstractCollection<V> {
@Override
public void clear() {
HashMap.this.clear();
}
@Override
public boolean contains(Object o) {
return HashMap.this.containsValue(o);
}
@Override
public int hashCode() {
int result = 0;
for (int i = 0; i < keys.length; ++i) {
if (keys[i] != null) {
result += valueHashCode(values[i]);
}
}
return result;
}
@Override
public Iterator<V> iterator() {
return new ValueIterator();
}
@Override
public boolean remove(Object o) {
if (o == null) {
for (int i = 0; i < keys.length; ++i) {
if (keys[i] != null && values[i] == null) {
internalRemove(i);
return true;
}
}
} else {
for (int i = 0; i < keys.length; ++i) {
if (valueEquals(values[i], o)) {
internalRemove(i);
return true;
}
}
}
return false;
}
@Override
public boolean removeAll(Collection<?> c) {
boolean didRemove = false;
for (Object o : c) {
didRemove |= remove(o);
}
return didRemove;
}
@Override
public int size() {
return HashMap.this.size;
}
}
private static final Object NULL_KEY = new Serializable() {
Object readResolve() {
return NULL_KEY;
}
};
static Object maskNullKey(Object k) {
return (k == null) ? NULL_KEY : k;
}
static Object unmaskNullKey(Object k) {
return (k == NULL_KEY) ? null : k;
}
/**
* Backing store for all the keys; transient due to custom serialization.
* Default access to avoid synthetic accessors from inner classes.
*/
transient Object[] keys;
/**
* Number of pairs in this set; transient due to custom serialization. Default
* access to avoid synthetic accessors from inner classes.
*/
transient int size = 0;
/**
* Backing store for all the values; transient due to custom serialization.
* Default access to avoid synthetic accessors from inner classes.
*/
transient Object[] values;
public HashMap() {
initTable(INITIAL_TABLE_SIZE);
}
public HashMap(Map<? extends K, ? extends V> m) {
int newCapacity = INITIAL_TABLE_SIZE;
int expectedSize = m.size();
while (newCapacity * 3 < expectedSize * 4) {
newCapacity <<= 1;
}
initTable(newCapacity);
putAll(m);
}
public void clear() {
initTable(INITIAL_TABLE_SIZE);
size = 0;
}
public boolean containsKey(Object key) {
return findKey(key) >= 0;
}
public boolean containsValue(Object value) {
if (value == null) {
for (int i = 0; i < keys.length; ++i) {
if (keys[i] != null && values[i] == null) {
return true;
}
}
} else {
for (Object existing : values) {
if (valueEquals(existing, value)) {
return true;
}
}
}
return false;
}
public Set<Entry<K, V>> entrySet() {
return new EntrySet();
}
@Override
@SuppressWarnings("unchecked")
public boolean equals(Object o) {
if (!(o instanceof Map)) {
return false;
}
Map<K, V> other = (Map<K, V>) o;
return entrySet().equals(other.entrySet());
}
@SuppressWarnings("unchecked")
public V get(Object key) {
int index = findKey(key);
return (index < 0) ? null : (V) values[index];
}
@Override
public int hashCode() {
int result = 0;
for (int i = 0; i < keys.length; ++i) {
Object key = keys[i];
if (key != null) {
result += keyHashCode(unmaskNullKey(key)) ^ valueHashCode(values[i]);
}
}
return result;
}
public boolean isEmpty() {
return size == 0;
}
public Set<K> keySet() {
return new KeySet();
}
@SuppressWarnings("unchecked")
public V put(K key, V value) {
int index = findKeyOrEmpty(key);
if (keys[index] == null) {
// Not in the map, may need to grow.
if (ensureSizeFor(++size)) {
// If we had to grow the table, must recompute the index.
index = findKeyOrEmpty(key);
}
keys[index] = maskNullKey(key);
values[index] = value;
return null;
} else {
// In the map, set a new value;
Object previousValue = values[index];
values[index] = value;
return (V) previousValue;
}
}
public void putAll(Map<? extends K, ? extends V> m) {
resizeForJoin(m.size());
for (Entry<? extends K, ? extends V> entry : m.entrySet()) {
put(entry.getKey(), entry.getValue());
}
}
@SuppressWarnings("unchecked")
public V remove(Object key) {
int index = findKey(key);
if (index < 0) {
return null;
}
Object previousValue = values[index];
internalRemove(index);
return (V) previousValue;
}
public int size() {
return size;
}
@Override
public String toString() {
if (size == 0) {
return "{}";
}
StringBuilder buf = new StringBuilder(32 * size());
buf.append('{');
boolean needComma = false;
for (int i = 0; i < keys.length; ++i) {
Object key = keys[i];
if (key != null) {
if (needComma) {
buf.append(',').append(' ');
}
key = unmaskNullKey(key);
Object value = values[i];
buf.append(key == this ? "(this Map)" : key).append('=').append(
value == this ? "(this Map)" : value);
needComma = true;
}
}
buf.append('}');
return buf.toString();
}
public Collection<V> values() {
return new Values();
}
/**
* Adapted from {@link org.apache.commons.collections.map.AbstractHashedMap}.
*/
@SuppressWarnings("unchecked")
protected void doReadObject(ObjectInputStream in) throws IOException,
ClassNotFoundException {
int capacity = in.readInt();
initTable(capacity);
int items = in.readInt();
for (int i = 0; i < items; i++) {
Object key = in.readObject();
Object value = in.readObject();
put((K) key, (V) value);
}
}
/**
* Adapted from {@link org.apache.commons.collections.map.AbstractHashedMap}.
*/
protected void doWriteObject(ObjectOutputStream out) throws IOException {
out.writeInt(keys.length);
out.writeInt(size);
for (int i = 0; i < keys.length; ++i) {
Object key = keys[i];
if (key != null) {
out.writeObject(unmaskNullKey(key));
out.writeObject(values[i]);
}
}
}
/**
* Returns whether two keys are equal for the purposes of this set.
*/
protected boolean keyEquals(Object a, Object b) {
return (a == null) ? (b == null) : a.equals(b);
}
/**
* Returns the hashCode for a key.
*/
protected int keyHashCode(Object k) {
return (k == null) ? 0 : k.hashCode();
}
/**
* Returns whether two values are equal for the purposes of this set.
*/
protected boolean valueEquals(Object a, Object b) {
return (a == null) ? (b == null) : a.equals(b);
}
/**
* Returns the hashCode for a value.
*/
protected int valueHashCode(Object v) {
return (v == null) ? 0 : v.hashCode();
}
/**
* Ensures the map is large enough to contain the specified number of entries.
* Default access to avoid synthetic accessors from inner classes.
*/
boolean ensureSizeFor(int expectedSize) {
if (keys.length * 3 >= expectedSize * 4) {
return false;
}
int newCapacity = keys.length << 1;
while (newCapacity * 3 < expectedSize * 4) {
newCapacity <<= 1;
}
Object[] oldKeys = keys;
Object[] oldValues = values;
initTable(newCapacity);
for (int i = 0; i < oldKeys.length; ++i) {
Object k = oldKeys[i];
if (k != null) {
int newIndex = getKeyIndex(unmaskNullKey(k));
while (keys[newIndex] != null) {
if (++newIndex == keys.length) {
newIndex = 0;
}
}
keys[newIndex] = k;
values[newIndex] = oldValues[i];
}
}
return true;
}
/**
* Returns the index in the key table at which a particular key resides, or -1
* if the key is not in the table. Default access to avoid synthetic accessors
* from inner classes.
*/
int findKey(Object k) {
int index = getKeyIndex(k);
while (true) {
Object existing = keys[index];
if (existing == null) {
return -1;
}
if (keyEquals(k, unmaskNullKey(existing))) {
return index;
}
if (++index == keys.length) {
index = 0;
}
}
}
/**
* Returns the index in the key table at which a particular key resides, or
* the index of an empty slot in the table where this key should be inserted
* if it is not already in the table. Default access to avoid synthetic
* accessors from inner classes.
*/
int findKeyOrEmpty(Object k) {
int index = getKeyIndex(k);
while (true) {
Object existing = keys[index];
if (existing == null) {
return index;
}
if (keyEquals(k, unmaskNullKey(existing))) {
return index;
}
if (++index == keys.length) {
index = 0;
}
}
}
/**
* Removes the entry at the specified index, and performs internal management
* to make sure we don't wind up with a hole in the table. Default access to
* avoid synthetic accessors from inner classes.
*/
void internalRemove(int index) {
keys[index] = null;
values[index] = null;
--size;
plugHole(index);
}
/**
* Resizes this map to accommodate the minimum size required to join this map
* with another map. This is an optimization to prevent multiple resizes
* during the join operation. Naively, it would seem like we should resize to
* hold {@code (size + otherSize)}. However, the incoming map might have
* duplicates with this map; it might even be all duplicates. The correct
* behavior when the incoming map is all duplicates is NOT to resize, and
* therefore not to invalidate any iterators.
* <p>
* In practice, this strategy results in a worst-case of two resizes. In the
* worst case, where {@code size} and {@code otherSize} are roughly equal and
* the sets are completely disjoint, we might do 1 initial rehash and then 1
* additional rehash down the road. But this is an edge case that requires
* getting unlucky on both boundaries. Most of the time, we do either 1
* initial rehash or 1 down the road, because doubling the capacity generally
* allows this map to absorb an equally-sized disjoint map.
*/
boolean resizeForJoin(int sizeOther) {
return ensureSizeFor(Math.max(size, sizeOther));
}
private int getKeyIndex(Object k) {
int h = keyHashCode(k);
// Copied from Apache's AbstractHashedMap; prevents power-of-two collisions.
h += ~(h << 9);
h ^= (h >>> 14);
h += (h << 4);
h ^= (h >>> 10);
// Power of two trick.
return h & (keys.length - 1);
}
private void initTable(int capacity) {
keys = new Object[capacity];
values = new Object[capacity];
}
/**
* Tricky, we left a hole in the map, which we have to fill. The only way to
* do this is to search forwards through the map shuffling back values that
* match this index until we hit a null.
*/
private void plugHole(int hole) {
int index = hole + 1;
if (index == keys.length) {
index = 0;
}
while (keys[index] != null) {
int targetIndex = getKeyIndex(unmaskNullKey(keys[index]));
if (hole < index) {
/*
* "Normal" case, the index is past the hole and the "bad range" is from
* hole (exclusive) to index (inclusive).
*/
if (!(hole < targetIndex && targetIndex <= index)) {
// Plug it!
keys[hole] = keys[index];
values[hole] = values[index];
keys[index] = null;
values[index] = null;
hole = index;
}
} else {
/*
* "Wrapped" case, the index is before the hole (we've wrapped) and the
* "good range" is from index (exclusive) to hole (inclusive).
*/
if (index < targetIndex && targetIndex <= hole) {
// Plug it!
keys[hole] = keys[index];
values[hole] = values[index];
keys[index] = null;
values[index] = null;
hole = index;
}
}
if (++index == keys.length) {
index = 0;
}
}
}
private void readObject(ObjectInputStream in) throws IOException,
ClassNotFoundException {
in.defaultReadObject();
doReadObject(in);
}
private void writeObject(ObjectOutputStream out) throws IOException {
out.defaultWriteObject();
doWriteObject(out);
}
}