Implementation for Double.longBitsToDouble and Double.doubleToLongBits
Patch by: Ray Cromwell (cromwellian@gmail.com)
Review by: fabbott
git-svn-id: https://google-web-toolkit.googlecode.com/svn/trunk@2421 8db76d5a-ed1c-0410-87a9-c151d255dfc7
diff --git a/user/super/com/google/gwt/emul/java/lang/Double.java b/user/super/com/google/gwt/emul/java/lang/Double.java
index ce65260..16fd322 100644
--- a/user/super/com/google/gwt/emul/java/lang/Double.java
+++ b/user/super/com/google/gwt/emul/java/lang/Double.java
@@ -22,7 +22,7 @@
public static final double MAX_VALUE = 1.7976931348623157e+308;
public static final double MIN_VALUE = 4.9e-324;
public static final double MIN_NORMAL = 2.2250738585072014e-308;
- public static final int MAX_EXPONENT = 1023;
+ public static final int MAX_EXPONENT = 1023;
// ==Math.getExponent(Double.MAX_VALUE);
public static final int MIN_EXPONENT = -1022;
// ==Math.getExponent(Double.MIN_NORMAL);;
@@ -31,6 +31,26 @@
public static final double NEGATIVE_INFINITY = -1d / 0d;
public static final double POSITIVE_INFINITY = 1d / 0d;
public static final int SIZE = 64;
+ static final int EXPONENT_BITSIZE = 11;
+ // the extra -1 is for the sign bit
+ static final int MANTISSA_BITSIZE = SIZE - EXPONENT_BITSIZE
+ - 1;
+ // the exponent is biased by one less than its midpoint, e.g. 2^11 / 2 - 1;
+ static final int EXPONENT_BIAS = 1 << (EXPONENT_BITSIZE - 1) - 1;
+ // the mask is all 1 bits in the exponent, e.g. 0x7ff shifted over by 52
+ static final long EXPONENT_MASK = (1L
+ << EXPONENT_BITSIZE - 1) << MANTISSA_BITSIZE;
+ // place 1-bit in top position
+ static final long NAN_MANTISSA = 1L << (MANTISSA_BITSIZE - 1);
+ // sign bit is the MSB bit
+ static final long SIGN_BIT = 0x1L << (SIZE - 1);
+ // Zero represented in biased form
+ static final int BIASED_ZERO_EXPONENT = EXPONENT_BIAS;
+ // The maximum mantissa value, represented as a double
+ static final double MAX_MANTISSA_VALUE = Math
+ .pow(2, MANTISSA_BITSIZE);
+ // The mantissa of size MANTISSA_BITSIZE with all bits set to 1_
+ static final long MANTISSA_MASK = (1L << MANTISSA_BITSIZE) - 1;
public static int compare(double x, double y) {
if (x < y) {
@@ -42,6 +62,83 @@
}
}
+ // Theory of operation: Let a double number d be represented as
+ // 1.M * 2^E, where the leading bit is assumed to be 1,
+ // the fractional mantissa M is multiplied 2 to the power of E.
+ // We want to reliably recover M and E, and then encode them according
+ // to IEEE754 (see http://en.wikipedia.org/wiki/IEEE754)
+ public static long doubleToLongBits(final double d) {
+
+ long sign = (d < 0 ? SIGN_BIT : 0);
+ long exponent = 0;
+ double absV = Math.abs(d);
+
+ if (Double.isNaN(d)) {
+ // IEEE754, NaN exponent bits all 1s, and mantissa is non-zero
+ return EXPONENT_MASK | NAN_MANTISSA;
+ }
+ if (Double.isInfinite(d)) {
+ // an infinite number is a number with a zero mantissa and all
+ // exponent bits set to 1
+ exponent = EXPONENT_MASK;
+ absV = 0.0;
+ } else {
+ if (absV == 0.0) {
+ // IEEE754, exponent is 0, mantissa is zero
+ // we don't handle negative zero at the moment, it is treated as
+ // positive zero
+ exponent = 0L;
+ } else {
+ // get an approximation to the exponent
+ // if d = 1.M * 2^E then
+ // log2(d) = log(1.M) + log2(2^E) = log(1.M) + E
+ // floor(log(1.M) + E) = E because log(1.M) always < 1
+ // it may turn out log2(x) = log(x)/log(2) always returns the
+ // the correct exponent, but this method is more defensive
+ // with respect to precision to avoid off by 1 problems
+ int guess = (int) Math.floor(Math.log(absV) / Math.log(2));
+ // force it to MAX_EXPONENT, MAX_EXPONENT interval
+ // (<= -MAX_EXPONENT = denorm/zero)
+ guess = Math.max(-MAX_EXPONENT, Math.min(guess, MAX_EXPONENT));
+
+ // Recall that d = 1.M * 2^E, so dividing by 2^E should leave
+ // us with 1.M
+ double exp = Math.pow(2, guess);
+ absV = absV / exp;
+
+ // while the number is still bigger than a normalized number
+ // increment exponent guess
+ // This might occur if there is some precision loss in determining
+ // the exponent
+ while (absV > 2.0) {
+ guess++;
+ absV /= 2.0;
+ }
+ // if the number is smaller than a normalized number
+ // decrement exponent. If the exponent becomes zero, and we
+ // fail to achieve a normalized mantissa, then this number
+ // must be a denormalized value
+ while (absV < 1 && guess > 0) {
+ guess--;
+ absV *= 2;
+ }
+ exponent = (guess + EXPONENT_BIAS) << MANTISSA_BITSIZE;
+ }
+ }
+ // if denormalized
+ if (exponent <= BIASED_ZERO_EXPONENT) {
+ // denormalized numbers have an exponent of zero, but pretend
+ // they have an exponent of 1, so since there is an implicit
+ // * 2^1 for denorms, we correct by dividing by 2
+ absV /= 2;
+ }
+ // the input value has now been stripped of its exponent
+ // and is in the range [1,2), we strip off the leading decimal to normalize
+ // and use the remainer as a percentage of the significand value (2^52)
+ long mantissa = (long) ((absV % 1) * MAX_MANTISSA_VALUE);
+ return sign | exponent | (mantissa & MANTISSA_MASK);
+ }
+
/**
* @skip Here for shared implementation with Arrays.hashCode
*/
@@ -57,6 +154,33 @@
return isNaN(x);
}-*/;
+ public static double longBitsToDouble(long value) {
+ // exponent in MSB bits 1-11
+ int exp = (int) ((value & EXPONENT_MASK) >> MANTISSA_BITSIZE);
+ // unbias exponent handle denorm case
+ int denorm = (exp == 0 ? 1 : 0);
+ // denorm exponent becomes -1022
+ exp = exp - EXPONENT_BIAS + denorm;
+ // mantissa in LSB 52 bits
+ long mantissa = (value & MANTISSA_MASK);
+ // sign in MSB bit 0
+ int sign = (value & SIGN_BIT) != 0 ? -1 : 1;
+ // unbiased exponent value of EXPONENT_BIAS + 1 (e.g. 1024)
+ // is equivalent to all 1 bits in biased exp (e.g. 2047)
+ if (exp == EXPONENT_BIAS + 1) {
+ if (mantissa != 0) {
+ return Double.NaN;
+ } else {
+ return sign < 0 ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY;
+ }
+ }
+ // non-denormized numbers get 1.0 added back, since our first digit is
+ // always a 1
+ // mantissa is divided by 2^52, and multiplied by 2^exponent
+ return sign * ((mantissa / MAX_MANTISSA_VALUE + (1 - denorm)) * Math
+ .pow(2, exp));
+ }
+
public static double parseDouble(String s) throws NumberFormatException {
return __parseAndValidateDouble(s);
}
diff --git a/user/test/com/google/gwt/emultest/java/lang/DoubleTest.java b/user/test/com/google/gwt/emultest/java/lang/DoubleTest.java
index 283763b..728ce1c 100644
--- a/user/test/com/google/gwt/emultest/java/lang/DoubleTest.java
+++ b/user/test/com/google/gwt/emultest/java/lang/DoubleTest.java
@@ -23,6 +23,17 @@
*/
public class DoubleTest extends GWTTestCase {
+ // Some actual results from JDK1.6 VM doubleToLongBits calls
+ private static final long NAN_LONG_VALUE = 0x7ff8000000000000L;
+ private static final long POSINF_LONG_VALUE = 0x7ff0000000000000L;
+ private static final long NEGINF_LONG_VALUE = 0xfff0000000000000L;
+ private static final long MAXD_LONG_VALUE = 0x7fefffffffffffffL;
+ private static final long MIND_LONG_VALUE = 0x1L;
+ private static final long MINNORM_LONG_VALUE = 0x10000000000000L;
+ private static final double TEST1_DOUBLE_VALUE = 2.3e27;
+ private static final long TEST1_LONG_VALUE = 0x459dba0fc757e49cL;
+ private static final long NEGTEST1_LONG_VALUE = 0xc59dba0fc757e49cL;
+
public String getModuleName() {
return "com.google.gwt.emultest.EmulSuite";
}
@@ -64,6 +75,31 @@
// Double.MIN_EXPONENT);
}
+ public void testDoubleToLongBits() {
+ assertEquals(Double.doubleToLongBits(Double.NaN), NAN_LONG_VALUE);
+ assertEquals(Double.doubleToLongBits(Double.POSITIVE_INFINITY), POSINF_LONG_VALUE);
+ assertEquals(Double.doubleToLongBits(Double.NEGATIVE_INFINITY), NEGINF_LONG_VALUE);
+ assertEquals(Double.doubleToLongBits(Double.MAX_VALUE), MAXD_LONG_VALUE);
+ assertEquals(Double.doubleToLongBits(Double.MIN_VALUE), MIND_LONG_VALUE);
+ assertEquals(Double.doubleToLongBits(Double.MIN_NORMAL), MINNORM_LONG_VALUE);
+ assertEquals(Double.doubleToLongBits(Double.MAX_VALUE), MAXD_LONG_VALUE);
+ assertEquals(Double.doubleToLongBits(Double.MIN_VALUE), MIND_LONG_VALUE);
+ assertEquals(Double.doubleToLongBits(Double.MIN_NORMAL), MINNORM_LONG_VALUE);
+ assertEquals(Double.doubleToLongBits(TEST1_DOUBLE_VALUE), TEST1_LONG_VALUE);
+ assertEquals(Double.doubleToLongBits(-TEST1_DOUBLE_VALUE), NEGTEST1_LONG_VALUE);
+ }
+
+ public void testLongBitsToDouble() {
+ assertTrue(Double.isNaN(Double.longBitsToDouble(NAN_LONG_VALUE)));
+ assertTrue(Double.POSITIVE_INFINITY == Double.longBitsToDouble(POSINF_LONG_VALUE));
+ assertTrue(Double.NEGATIVE_INFINITY == Double.longBitsToDouble(NEGINF_LONG_VALUE));
+ assertTrue(Double.MAX_VALUE == Double.longBitsToDouble(MAXD_LONG_VALUE));
+ assertTrue(Double.MIN_VALUE == Double.longBitsToDouble(MIND_LONG_VALUE));
+ assertTrue(Double.MIN_NORMAL == Double.longBitsToDouble(MINNORM_LONG_VALUE));
+ assertTrue(TEST1_DOUBLE_VALUE == Double.longBitsToDouble(TEST1_LONG_VALUE));
+ assertTrue(-TEST1_DOUBLE_VALUE == Double.longBitsToDouble(NEGTEST1_LONG_VALUE));
+ }
+
public void testParse() {
assertTrue(0 == Double.parseDouble("0"));
assertTrue(-1.5 == Double.parseDouble("-1.5"));